
Speeding	up	the	Vulnerability	Checks	
Development	Process	
	

Automated	Generation	of	OVAL®	
Vulnerability	Definitions	
(Episode1:	Microsoft	Windows)	
	
	
Jerome	Athias	
	
2017	January	–	v0.1	-	DRAFT	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
Trademark	Information	
OVAL,	the	OVAL	logo,	and	CVE	are	registered	trademarks	and	CCE	and	CPE	are	
trademarks	of	The	MITRE	Corporation.	All	other	trademarks	are	the	property	of	their	
respective	owners.	
	
	
	 	

Introduction	–	What	is	OVAL	
	
As	per	The	OVAL®	Language	Specification	[0]	(Version	5.11.2):	
	
“The	 Open	 Vulnerability	 and	 Assessment	 Language	 (OVAL®)	 is	 an	 international,	
information	security,	 community	 standard	 to	promote	open	and	publicly	available	
security	 content,	 and	 to	 standardize	 the	 transfer	 of	 this	 information	 across	 the	
entire	spectrum	of	security	tools	and	services.”	
	
“The	 OVAL	 Language	 provides	 a	 common	 and	 structured	 format	 that	 facilitates	
collaboration	and	 information	sharing	among	 the	 information	security	 community	
as	well	as	interoperability	among	tools.”	
	
It	is	part	of	SCAP.	[1]	
	
An	OVAL	Definition	is	materialized	as	an	XML	file,	distributed	to	be	used	by	
interpreters	such	as	Vulnerability	Scanners.	
(one	could	think	of	it	as	the	“YARA	for	vulnerabilities”)	

Use	Cases	
	
The	OVAL®	Language	Specification	contains	various	uses	cases,	here	are	just	two	
examples	for	Vulnerability	Management:	

Use	Case	Scenario:	Collaborating	on	the	Development	of	a	Vulnerability	Check	
A	 new	 critical	 vulnerability	 is	 disclosed	 by	 an	 application	 vendor	 and	 the	 initial	
security	 advisory	 does	 not	 include	 an	 authoritative	 standardized	 check	 for	 the	
vulnerability.	 A	 vulnerability	 management	 product	 vendor	 quickly	 develops	 and	
distributes	an	OVAL	Definition	with	a	check	for	the	presence	of	the	vulnerability	on	
the	platforms	the	vendor	supports	for	its	customers.	<snip>	

Use	Case	Scenario:	Leveraging	a	Standardized	Patch	Check	
An	operating	system	vendor	releases	a	new	set	of	patches	for	its	platform	and	
includes	standardized	patch	checks	as	OVAL	Definitions.	<snip>	
	
	
	 	

Current	State	
	
As	of	now	(over	the	past	few	years),	only	few	organizations	or	individuals	have	been	
observed	effectively	creating	and	publicly	sharing	OVAL	Definitions.	
Even	if	the	language	is	(or	claimed	to	be)	supported	by	the	majority	of	the	most	well	
known	 Configuration	 &	 Vulnerability	 Scanners,	 its	 global	 adoption	 is	 still	 not	 as	
significant.	
	
While	 the	OVAL	 language/model	 could	be	seen	as	quite	 complex	 for	a	new	comer	
(the	specification	is	almost	150	pages),	it	remains	powerful.	
Probably	due	to	this	‘complexity’,	only	just	few	tools	effectively	supports	it.	
(Efforts	from	Open	Source	products	such	as	OVALDi	merits	to	be	highlighted.)	
Moreover,	no	really	good	and	user	friendly	editor	is	currently	available.	*	
	
These	facts	greatly	reduce	its	wide	adoption,	and	do	not	facilitate	the	production	of	
OVAL	Definitions.	
Also,	 on	 top	 of	 that,	 needs	 to	 be	 stated	 that	 proprietary	 equivalent	 to	 OVAL	
Definitions	 are	 quickly	 created	 by	 commercial	 vendors	 of	 relatively	 affordable	
security	products	(i.e.	Vulnerability	Scanners).	
	
*	Note	that	XORCISM	has	been	proving	to	offer	a	great	potential	to	resolve	that	

Current	State	-	Analysis	
	
From	this	picture	and	observations	made	over	the	past	few	years,	it	appears	that	the	
number	of	OVAL	Definitions	creators/generators/editors	is	limited	to	a	few.	
And	it	seems	that	A	LOT	of	manual	tasks	still	remain	involved.	
	
From	 my	 study	 of	 the	 OVAL	 language	 (as	 part	 of	 my	 XORCISM	 project	 [2])	 and	
community,	 I	decided	to	 investigate	 if,	and	how,	 it	would	be	technically	 feasible	to	
speed-up	the	OVAL	content	generation	process.	
	
	 	

A	Journey	in	OVAL	(and	Microsoft	website)	
	
As	 part	 of	 my	 XORCISM	 research	 regarding	 the	 creation	 of	 an	 all-in-one	
Cybersecurity	and	IT	security	data	model	(Ontology+),	I	came	to	OVAL,	and	after	a	
quick	review,	I	decided	to	create	a	relational	database	representation	of	its	model.	
This	was	done	relatively	quickly.	
But	to	verify	that	my	interpretation	and	modeling	is	correct,	I	use	to	write	code	able	
to	parse	and	entirely	ingest	original	content	into	my	database.	
It	helps	me	to	fix	the	database	schema,	and	make	sure	that	I	manipulate	each	piece	
of	 information.	 Basically,	 if	 I	 can	 recreate	 the	 original	 content	 purely	 from	 my	
database	(after	the	initial	prepopulating	of	it),	I’m	confident	enough.	
Then,	 the	 relational	 representation	 of	 it	 helps	 my	 brain	 better	 understand	 the	
relationships	than	when	reading	a	Word	specification,	or	XML.	
	
In	 many	 cases,	 it	 also	 helped	me	 to	 discover	 some	 hidden	 or	 unexpected	 errors,	
optimization	points,	or	new	potential	use	cases.	
	
Anyhow,	regarding	the	publication	of	OVAL	content	from	the	community,	following	
the	publication	of	some	vulnerability	advisories/bulletins,	and	for	the	current	scope	
of	 this	 article,	 the	 Microsoft’s	 ones:	 I	 observed	 a	 relatively	 long	 (from	 a	
Cybersecurity	point	of	view)	delay	between	the	two.	
Without	 any	 specific	 efficient	 tooling,	 and	 quickly	 understanding	 that	 experience	
with	 the	 language	 is	 so	 absolutely	 critical,	 I	 understood	 that	 this	 delay	 was	
explainable.	
Digging	more	 into	 it,	 I	 also	noticed	 the	complex	path	 to	access	all	 the	 information	
needed	 to	 build	 a	 new	 OVAL	 Definition,	 from	 scratch,	 for	 Microsoft	
Patches/Vulnerabilities.	
	
	 	

The	Challenge	
	
From	“CVE-2017-001”,	generates	automatically	an	accurate	OVAL	Definition	XML	
file.	(in	less	than	60	seconds)	

Getting	information	about	the	Products	impacted	
	

CVEs	and	CPEs	
	
A	CVE	provide	a	list	of	CPEs.	Or,	in	fact,	some	kind	of	“CPE	patterns”.	
This	statement	 is	because	 if	you	would	 look	 for	 the	CVE’s	CPEs	 into	 the	main	CPE	
database,	(Official	CPE	Dictionary)	chances	are	that	you	would	often	not	find	them	
directly.	
What	the	CVE	provides	is	something	like	“CPEs	starting	with”.	
	
With	 that	 said,	 an	analysis	of	 the	CPE	database	will	 tell	 you	 that	you	can	obtain	a	
Title	for	the	CPEs.	
	
Examples:	
<cpe-item	name="cpe:/a:microsoft:outlook:2010:sp1:~~~~x64~">	
				<title	xml:lang="en-US">Microsoft	Outlook	2010	sp1	x64	(64bit)</title>	
<cpe-item	name="cpe:/o:microsoft:windows_server_2008:-">	
				<title	xml:lang="en-US">Microsoft	Windows	Server	2008</title>	
<cpe-item	name="cpe:/o:microsoft:windows_server_2008:-:sp2">	
				<title	xml:lang="en-US">Microsoft	Windows	Server	2008	Service	Pack	2</title>	
<cpe-item	name="cpe:/o:microsoft:windows_server_2008:-:sp2:x64">	
				<title	xml:lang="en-US">Microsoft	Windows	Server	2008	Service	Pack	2	x64	(64-
bit)</title>	
While	 interesting,	 this	 won’t	 really	 be	 of	 great	 help	 in	 our	 challenge	 while	 these	
titles	include	the	products	names	with	the	versions…	which	would	make	it	difficult	
to	use	in	our	below	“matching	function”	with	the	OVAL	Inventory	Definitions.	
	

OVAL	Inventory	Definitions	
	
An	OVAL	Inventory	Definition,	or	an	OVAL	Definition	of	class	“inventory”,	“describes	
an	OVAL	Definition	that	checks	to	see	if	a	piece	of	software	is	installed	on	a	system.	
An	evaluation	result	of	‘true’,	for	this	class	of	OVAL	Definitions,	indicates	that	the	
specified	software	is	installed	on	the	system.”	
	
This	is	an	important	ingredient	for	the	cooking	of	our	Final	OVAL	Definition.	
While	later	on	we	will	focus	on	how	to	check	if	a	specific	file	(i.e.	.dll	or	.exe)	is	
present	on	a	system,	and	analyze	its	version,	we	would	have	first	to	check	if	the	
Product	(piece	of	software)	is	present	on	the	system.	
	

The	matching	function	
	
At	this	point,	we	would	know:	

• The	CVE	
• The	CPEs	(patterns)	listed	in	the	CVE	
• The	real	CPEs	corresponding	to	the	CPEs	patterns	(by	simply	searching	with	

StartsWith()	into	the	central	CPE	database	(Official	Dictionary))	
	
So	now	we	need	a	way	to:	

• 1)	Identify	to	what	Product	a	CPE	corresponds	to	
• 2)	Obtain	an	OVAL	Inventory	Definition	for	this	Product(s)	

	
So	for	1):	
I	tried	using	the	CPE.Titles,	but	it	was	not	really	efficient	(or	too	difficult,	or	not	
generic	enough),	due	to	the	difficulty	to	predict	what	information,	and	how	it	would	
be	represented,	regarding	the	product’s	“version”	part	in	the	CPE.Title.	
Examples:	Gold	or(Gold)	Edition,	initial	release,	R2	SP2	vs	SP2	R2,	etc.	
	
I	went	to	just	using	the	“product”	part	of	the	CPEName.	
[part="a",vendor="microsoft",product="internet_explorer",ve
rsion="8\.0\.6001",update="beta"]
	
It	appeared	more	efficient,	especially	while	using	some	hardcoding	later	on	in	my	
code	to	enhance	this	simple	information	with	things	like	“Service	Pack	1”	(or	SP1	–	
depending	the	use	case),	“Release	Candidate”	(or	RC	–	depending	on	the	use	case),	
x86/x64,	R2,	Enterprise/Professional,	etc.	in	a	specific	order.	
	
For	2):	
No	magic	here.	
I	mean,	I	don’t	think	there	would	be	an	automated,	generic	way,	of	creating	checks	
like	“is	product	X	installed”	by	a	computer.	(homework	for	IA	maybe)	
But,	
Luckily	enough,	a	couple	of	cool	guys	(ladies	and	gentlemen)	(probably	waiting	for	
some	drinks	beers/vodka)	already	created	manually	a	quite	long	list	(hundreds)	of	
OVAL	Inventory	Definitions	for	Microsoft	products.	
	
Examples:	
OVALDefinitionIDPattern	 OVALDefinitionTitle	
oval:org.cisecurity:def:698	 Microsoft	Windows	10	Version	1511	(x64)	is	installed	
oval:org.cisecurity:def:699	 Microsoft	Windows	10	Version	1511	(x86)	is	installed	
oval:org.cisecurity:def:1377	Microsoft	Windows	10	Version	1607	(32-bit)	is	
installed	
oval:org.cisecurity:def:1379	Microsoft	Windows	10	Version	1607	(64-bit)	is	
installed	
	

So	now	that	we	know	(in	fact	assume)	that	we	can	find	an	already	created	OVAL	
Inventory	Definition	for	a	Microsoft	product	–	and	–	that	we	learned	how	to	
reconstruct	a	Microsoft	product	name	(let’s	say	compatible	with	the	OVAL	Inventory	
Definitions	names)	automatically	from	a	CPE,	we	can	proceed	writing	our,	now	
infamous,	“matching	function”.	
	
-	See	the	source	code.	
	
At	this	point,	we	are	able,	in	an	automated	way,	starting	from	just	a	CVE	number	as	
an	input:	to	identify	the	Products/Platforms	(OS)	impacted	and	use	OVAL	to	check	
that.	
	
	 	

Getting	information	about	the	Files	impacted/updated	
	
So,	my	good	Mister	Watson	Sherlock	Holmes,	the	1M$	question	today	is:	
How	automatically	retrieve	The	file	impacted	by	a	vulnerability/updated	by	a	
patch	from	a	CVE	number?	
	

Getting,	downloading	and	installing	the	Patch/KB	and	checking	the	system	
pre/post	state?	
Well,	yeah	maybe	for	grandma	playing	bindiff/IDA/MSF	(this	in	another	
Episode	maybe)	but	that	would	require	Swordfish	in	French-like	bandwith	
and	storage	on	the	moon.	
	
No	well,	little	padawan,	look,	Microsoft	is	smart	enough	to	provide	this	
detailed	information	(sometimes	for	free…)	(through	various	channels…)	(into	
various	formats…).	
Where	is	that?	Deathstar?	
Just	on	Microsoft.com,	in	the	MS-	and/or	multiple	KB	pages.	
Ready	for	some	scraping	kungfu?	
Let’s	do	this.	Just	do	it	(or	I	will)	

	
So,	if	we	look	at	a	CVE,	it	comes	with	References.	
In	the	case	of	a	Microsoft	product,	 it	would	come	with	a	Reference	(link/URL)	to	a	
MS-	webpage.	

Ok,	easy,	IE/wget/Lynx	will	do	it!	
Well,	not	so	easy	young	padawan	(remember?	Wr	talkin	bout	Microsoft),	so	–	
not	so	fast…	
So	yeah,	the	MS-	page	won’t	give	you	The	golden	file&version.	

You	will	get	a	link	to	a	KB	page	(a	big	one.	Remember?	Wr	talki…)	(ah	and	no	
chocolate.	sorry,	it’s	patented.	Legal	story…)	
	
And	the	KB	will	give	you…	no	idea?...		
many	links!	(Wow,	how	cool	is	that.)	
to	many	KBs.	(so,	repeat	after	me:	scrap,	scrap,	scrap,	and	more	scrap)	
	

Ok	boy,	I’m	coding	for	few	centuries	now,	so	few	links	===	piece	of	cake,	!=	
battle	vs	Eminem.	
	
Yeah	sure	Ruby	Yoda,	scrap,	parse	and	regex	dance	party.	Fun	
But	u	now	what?	You	Master,	with	your	HTML	v0.1betadraft	parsing	
certification,	did	you	heard	about	this	thing:	JS,	Ajax	and	co.?	funny	stuff	(eheh	
Houston…	we	got	a	problem)	
So	listen	Billy	the	Kid,	how	we	gonna	get	this	fu**ing	content?	
Well,	my	kid	once	told	me	about	that	toy,	SeleniumHQ	[3]…	(we’ll	learn	later	
it’s	not	a	new	drug)	

	

Then,	
One	would	 realize	 (while	 browsing	 through	 the	KBs	 	 on	 its	 iPad…	come	on,	 I	 know	
that’s	what	u	do	when	your	wife	is	out)	that	
	
for	 accessing	 some	KBs	 (let’s	 say	 like	ones	 for	Windows	10,	or	Windows	Server	
2016…)	 that	 would	 take	 a	 Microsoft	 Account	 (no	 wait,	 not	 that	 one!	 A	
Business/Education	Microsoft	Account.	Aaaah	uh	yeah,	euh,	I	see…	(and	if	you	don’t,	go	
get	an	evaluation	one	on	Office365))	
	
Anyhow,	when	one	finds	it	way	through	the	KB	pages	to	the	File	information	section,	
with	the	list	of	updated	files,	he	will	find:	
The	list	of	modified	files	(with	info	like	Date	and	Version)	in	an	HTML	table	
or	
The	list	of	modified	files	(with	info	like	Date	and	Version)	in	a	csv	file	
	

• Parsing	these	lists	is	straightforward.	
• Sorting	them	by	dates	also.	
• Now	being	sure	that	our	program	will	always	retrieve	automatically	The	file	

we	would	be	looking	for,	each	time,	is	less	easy.	(This	is	not	covered	here	for	
now,	while,	luckily	enough,	during	testing,	it	has	been	the	case	most	of	the	
time.)	

	

Baking	the	Cake	
	
Now	 that	 we	 do	 have	 automatically	 collected	 our	 ingredients	 (CVE,	 impacted	
Platforms	 and	 Products	 versions,	 OVAL	 Inventory	 Definitions	 for	 them,	 Files	
impacted/updated	with	their	Versions),	we	can	finally	put	our	cake	in	the	oven.	
We’ll	 just	 make	 sure	 to	 reuse	 (if	 applicable)	 or	 create	 some	 OVAL	 variables,	
file_state	and	file_object	for	our	FILE_TEST.	
Mix	all	of	that	and	that’s	it	basically.	Voila!	

Check	in	60	seconds.		
	
	
	 	

References	
	
[0]	The	OVAL®	Language	Specification	
	
[1]	SCAP	
https://scap.nist.gov/	
	
[2]	XORCISM	
https://github.com/athiasjerome/XORCISM	
	
[3]	SeleniumHQ	Browser	Automation	
http://www.seleniumhq.org	
	

